Hence,
$$2x_{n+1} + 1 = \frac{3(2x_n + 1)}{4x_n + 3 - 2\cos^2\alpha(2x_n + 1)}$$
 and
$$\frac{1}{2x_{n+1} + 1} = \frac{4x_n + 3 - 2\cos^2\alpha(2x_n + 1)}{3(2x_n + 1)}$$
$$= -\frac{2}{3}\cos^2\alpha + \frac{2(2x_n + 1) + 1}{3(2x_n + 1)}$$
$$= -\frac{2}{3}\cos^2\alpha + \frac{2}{3} + \frac{1}{3(2x_n + 1)}$$
$$= \frac{2}{3}\sin^2\alpha + \frac{1}{3(2x_n + 1)}.$$

Suppose that (1) holds, then

$$\frac{1}{2x_{n+1}+1} \; = \; \frac{2}{3} \sin^2 \alpha + \frac{3(3^{n-1}-1) \sin^2 \alpha + 1}{3^{n+1}} \; = \; \frac{3(3^n-1) \sin^2 \alpha + 1}{3^{n+1}} \; ,$$

and the induction proof is complete. Now

$$\sum_{k=1}^{n} \frac{1}{2x_k + 1} = \sum_{k=1}^{n} \frac{3(3^{k-1} - 1)\sin^2 \alpha + 1}{3^k}$$

$$= \left(\sum_{k=1}^{n} \frac{1}{3^k}\right) + \sin^2 \alpha \sum_{k=1}^{n} \left(1 - \frac{1}{3^{k-1}}\right)$$

$$= \frac{1}{2} \left(1 - \frac{1}{3^n}\right) + \sin^2 \alpha \left(n - \frac{3}{2} \left(1 - \frac{1}{3^n}\right)\right)$$

$$= \left(1 - \frac{1}{3^n}\right) \left(\frac{1}{2} - \frac{3}{2}\sin^2 \alpha\right) + n\sin^2 \alpha.$$

If $\sin^2 \alpha > 0$, then

$$y_n = \left(1 - \frac{1}{3^n}\right) \left(\frac{1}{2} - \frac{3}{2}\sin^2 lpha\right) \ge -1 + n\sin^2 lpha$$

and hence, $y_n \to \infty$ as $n \to \infty$. In the other case, $\sin^2 \alpha = 0$, and then we have $y_n = \frac{1}{2} \left(1 - \frac{1}{3^n}\right) \to \frac{1}{2}$ as $n \to \infty$. Hence, $\{y_n\}_{n=1}^{\infty}$ has a finite limit if and only if $\alpha = k\pi$, $k \in \mathbb{Z}$, for which the corresponding limit is $\frac{1}{2}$.

6. Find the least value and the greatest value of the expression

$$P = \frac{x^4 + y^4 + z^4}{(x + y + z)^4},$$

where x, y, and z are positive real numbers satisfying the condition

$$(x+y+z)^3 = 32xyz.$$

Solution by Arkady Alt, San Jose, CA, USA.

Since P is homogeneous, we can assume that x+y+z=1. Then subject to conditions x+y+z=1 and $xyz=\frac{1}{32}$ we have

$$P = x^{4} + y^{4} + z^{4}$$

$$= 1 - 4(xy + yz + zx) + 2(xy + yz + zx)^{2} + 4xyz$$

$$= 2(xy + yz + zx)^{2} - 4(xy + yz + zx) + 1 + \frac{1}{8}$$

$$= 2(1 - xy - yz - zx)^{2} - \frac{7}{8}.$$

Since $xy+yz+zx\leq \frac{1}{3}(x+y+z)^2=\frac{1}{3}$, then 1-xy-yz-zx>0, so

$$\min P = 2(1 - \max(xy + yz + zx))^2 - \frac{7}{8},$$
 $\max P = 2(1 - \min(xy + yz + zx))^2 - \frac{7}{8}.$

Moreover, $xy+yz+zx=\frac{1}{32z}+z(1-z)$, since x+y=1-z and $xy=\frac{1}{32z}$. Setting $h(z)=\frac{1}{32z}+z(1-z)$, we have that

$$\min P = 2(1 - \max h(z))^2 - \frac{7}{8},$$
 $\max P = 2(1 - \min h(z))^2 - \frac{7}{8},$

where z is constrained by the solvability of the Viète System

$$egin{array}{rcl} x+y&=&1-z\,,\ xy&=&rac{1}{32z}\,, \end{array}$$

in positive real numbers. That is, $z\in(0,1)$ and z must additionally satisfy the inequality $(1-z)^2-4\cdot\frac{1}{32z}\geq0$. We have

$$(1-z)^2 - 4 \cdot \frac{1}{32z} = \frac{1}{z} \left(z - \frac{1}{2}\right) \left(z - \frac{3-\sqrt{5}}{4}\right) \left(z - \frac{3+\sqrt{5}}{4}\right),$$

and $0<\frac{3-\sqrt{5}}{4}<\frac{1}{2}<\frac{3+\sqrt{5}}{4}$, thus, for $z\in(0,1)$ the above expression is non-negative for $z\in\left[\frac{3-\sqrt{5}}{4},\frac{1}{2}\right]$, and we must find $\min h(z)$ and $\max h(z)$ on this interval. We have

$$h'(z) \; = \; rac{32z^2 - 64z^3 - 1}{32z^2} \; = \; -rac{2}{z^2} \left(z - rac{1}{4}
ight) \left(z - rac{1 - \sqrt{5}}{8}
ight) \left(z - rac{1 + \sqrt{5}}{8}
ight) \; ,$$

hence, $z=\frac{1}{4}$ and $z=\frac{1+\sqrt{5}}{8}$ are the only roots of h' in the interval of interest. By direct calculation we have $h\left(\frac{1}{4}\right)=h\left(\frac{1}{2}\right)=\frac{5}{16}$ and also that

$$h\left(\frac{3-\sqrt{5}}{4}\right)=h\left(\frac{1+\sqrt{5}}{8}\right)=\frac{5\sqrt{5}-1}{32}$$
, so the minimum and maximum

values of h(z) in the interval of interest are $\frac{5}{16}$ and $\frac{5\sqrt{5}-1}{32}$, respectively. Finally, the extreme values of P are

$$\begin{split} \min P &=& 2 \left(1 - \frac{5\sqrt{5} - 1}{32}\right)^2 - \frac{7}{8} \, = \, \frac{383 - 165\sqrt{5}}{256} \, , \\ \max P &=& 2 \left(1 - \frac{5}{16}\right)^2 - \frac{7}{8} \, = \, \frac{9}{128} \, . \end{split}$$

7. Find all triples of positive integers (x, y, z) satisfying the condition

$$(x+y)(1+xy) = 2^z$$
.

Solved by Michel Bataille, Rouen, France; Pavlos Maragoudakis, Pireas, Greece; and Panos E. Tsaoussoglou, Athens, Greece. We give the solution of Bataille.

The solutions are the triples $(1, 2^j - 1, 2j)$, $(2^j - 1, 1, 2j)$, where j is a positive integer and $(2^k - 1, 2^k + 1, 3k + 1)$, $(2^k + 1, 2^k - 1, 3k + 1)$, where k is an integer with $k \geq 2$.

It is readily checked that these triples are solutions. Conversely, suppose (x, y, z) is a solution. Then $x + y = 2^a$ and $1 + xy = 2^b$ for some positive integers a and b. It follows that both x and y are odd. Note that (y, x, z) is also a solution, so we may suppose that $x \leq y$, and we have that $b \ge a$, since $1 + xy - (x + y) = (1 - x)(1 - y) \ge 0$. If x = 1, then $(1 + y)^2 = 2^z$ so that z = 2j, $1 + y = 2^j$ for some

positive integer j and $(x,y,z)=(1,2^j-1,2j)$. Now, suppose $3\leq x\leq y$, in which case $a\geq 3$ and $b\geq 4$. Let x=2m+1 and y=2n+1. From $x+y=2^a$, $1+xy=2^b$, we deduce that m and n are of opposite parity and

$$mn = 2^{a-2}(2^{b-a}-1),$$
 $(m+1)(n+1) = 2^{a-2}(2^{b-a}+1).$

Thus, either one or the other of the following holds:

$$(m,n)=(2^{a-2},2^{b-a}-1), \quad (m+1,n+1)=(2^{b-a}+1,2^{a-2}); \ (m,n)=(2^{b-a}-1,2^{a-2}), \quad (m+1,n+1)=(2^{a-2},2^{b-a}+1).$$

In any case, b-a=a-2, so $x+y=2^a$ and $1+xy=2^{2a-2}$. As a result, the quadratic polynomial $X^2-2^aX+(2^{2a-2}-1)$ has x,y as roots. We recall that $x \le y$ and set k = a - 1 to obtain $(x, y, z) = (2^k - 1, 2^k + 1, 3k + 1)$. This completes the proof.

That completes the *Corner* for this month. Send me your nice solutions and generalizations!